1. Introduction

The demand for labor in the long run should be important to labor economists for a variety of reasons. So long as the supply of labor to an occupation, industry or area is not perfectly elastic in the long run, the nature of demand for labor in that subsector interacts with the shape of the supply function to determine the level of wages. As in the market for a commodity, so too in the market for labor the demand is an integral determinant of the price of what is exchanged.

In many cases economists are interested in the demand for labor for its own sake rather than for its effects on wage determination. In some instances, e.g. in unionized employment or where the supply of labor to a subsector is perfectly elastic, the wage can be viewed as unaffected by labor demand. In such cases knowledge of wage elasticities of labor demand allows one to infer the effects of exogenous changes in wage rates on the amount of labor employers seek to use. The impact of changes in the price of one type of labor on its employment and on the employment of other types of labor (cross-price effects) can be discovered using estimates of labor-demand relations alone. Alternatively, one can in many instances assume that the employment of workers of a particular type is fixed (and determined solely by the completely inelastic supply of such workers to the market). In those cases the demand for their labor determines the wage rate they are paid. Knowledge of the shape of the labor-demand function enables one to infer how exogenous changes in supply (due perhaps to changes in the demographic mix of the labor force or to shifts in suppliers' preferences for entering different occupations) affect the wage rate of workers in the group whose supply has shifted and in other groups too (cross-quantity effects).

Economists interested in policy questions should be concerned with issues of labor demand. The effects of any policy that changes factor prices faced by employers will depend on the structure of labor demand. Thus, to predict the

*My thanks to Orley Ashenfelter, George Borjas, George Johnson, Richard Layard, Andrew Oswald, and John Pencavel for helpful comments.
impact of wage subsidies, payroll tax changes, investment tax credits, etc. one must have satisfactory estimates of underlying parameters. Similarly, the impact on wages of policies such as skills training or population control that change the demographic or human-capital mix of the labor force can be assessed only if one knows the underlying structure of substitution relations among groups of workers.

Bearing in mind throughout that the purpose of studying the demand for labor is to understand how exogenous changes will affect the employment and/or wage rates of a group or groups of workers, we begin this essay by examining the theory of labor demand. The theoretical discussion is divided into two parts: demand for labor in the two-factor case, and demand in the multi-factor case. In each part we first derive the results generally, then proceed to specific functional forms. In Sections 4 and 5 we point out the issues involved in estimating labor-demand relations for one type of homogeneous labor, and then summarize the state of knowledge in this area. Sections 6 and 7 perform the same tasks for the demand for labor of several types.

The focus throughout is on the relations between exogenous wage changes and the determination of employment, and between exogenous changes in inelastically supplied labor and the structure of relative wages. We ignore the possibility that firms may not maximize profits or minimize costs, and assume throughout that employers are perfect competitors in both product and labor markets. While this latter assumption may be incorrect, the analysis applies mutatis mutandis to employers who have some product-market power. Most important, we focus only on the long-run, or static theory of labor demand, and thus only on the long-run effects of exogenous changes in wage rates or labor supply. The dynamics of labor demand, particularly the role of adjustment costs and the distinction between the amount of labor used and its intensity of use (employment versus hours per period), are ignored (and left to Nickell, Chapter 9 in this Handbook). Most lags in the adjustment of labor demand to its long-run equilibrium do not appear to be very long [Hamermesh (1980)]; the slow adjustment of relative wages to exogenous shocks appears due mostly to lags in suppliers' decisions about training and mobility. That being the case, the theory of labor demand in the long run, and the estimates of parameters describing that demand, are useful in answering questions of interest to policy-makers and others who are interested in the near-term effects of various changes in the labor market.

2. Two factors—the theory

While the theoretical results on labor demand can be generalized to N factor inputs, many useful insights into the theory can be gained by examining the demand for homogeneous labor when there is only one cooperating factor, usually assumed to be capital services. Since much of the terminology of labor
demand applies in the two-factor case, concentrating on it also has some pedagogical advantages. Also, many of the specific forms for the production and cost functions from which labor-demand functions are derived were initially developed for the two-factor case and make a good deal more economic sense applied to only two factors than generalized to several. The presentation here and in Section 3 goes through some derivations, but our aim is to provide a theoretical outline to link to empirical work. More complexity can be found in Varian (1978); still more is available in the essays in Fuss and McFadden (1978).

Assume that production exhibits constant returns to scale, as described by F, such that

$$Y = F(L, K), \quad F_i > 0, \quad F_{ii} < 0, \quad F_{ij} > 0,$$ \hspace{1cm} (1)

where Y is output, and K and L are homogeneous capital and labor inputs, respectively. A firm that maximizes profits subject to a limit on costs will set the marginal value product of each factor equal to its price:

$$F_L - \lambda w = 0, \quad (2a)$$
$$F_K - \lambda r = 0, \quad (2b)$$

where w and r are the exogenous prices of labor and capital services, respectively, λ is a Lagrangean multiplier showing the extra profit generated by relaxing the cost constraint, and we assume the price of output is unity. The firm will also operate under the cost constraint:

$$C^0 - wL - rK = 0. \quad (2c)$$

The ratio of (2a) to (2b) is the familiar statement that the marginal rate of technical substitution equals the factor-price ratio for a profit-maximizing firm.

Allen (1938, p. 341) defines the elasticity of substitution between the services of capital and labor as the effect of a change in relative factor prices on relative inputs of the two factors, holding output constant. (Alternatively, it is the effect of a change in the marginal rate of technical substitution on the ratio of factor inputs, defined as an elasticity.) In this two-factor linear homogeneous case it is [see Allen (1938, pp. 342–343)]

$$\sigma = \frac{d\ln(K/L)}{d\ln(w/r)} = \frac{d\ln(K/L)}{d\ln(F_L/F_K)} = \frac{F_L F_K}{Y F_{LK}}. \quad (3)$$

The own-wage elasticity of labor demand at a constant output and constant r is [Allen (1938, pp. 372–373)]

$$\eta_{LL} = -[1 - s] \sigma < 0, \quad (4a)$$

where $s = wL/Y$, the share of labor in total revenue. Intuitively, the constant-output elasticity of labor demand is smaller for a given technology (σ) when
labor's share is greater because there is relatively less capital toward which to substitute when the wage rises. The cross-elasticity of demand (for capital services) is

$$\eta_{LK} = (1 - s)\sigma > 0.$$ \hfill (4b)

[What is the intuition on the inclusion of $1 - s$ in (4b)?]

Both (4a) and (4b) reflect only substitution along an isoquant. When the wage rate increases, the cost of producing a given output rises; and the price of the product will rise, reducing the quantity of output sold. The scale effect depends on the (absolute value) of the elasticity of product demand, η, and on the share of labor in total costs (which determines the percentage increase in price). Thus to (4a) and (4b) the scale effects must be added, so that

$$\eta'_{LL} = -[1 - s]\sigma - s\eta$$ \hfill (4a')

and

$$\eta'_{LK} = [1 - s](\sigma - \eta).$$ \hfill (4b')

The results here and in (4a) and (4b) are the most important in the theory of labor demand. They will be proved below using the cost-function approach.

Both (4a) and (4a') are useful, depending on the assumptions one wishes to make about the problem under study. Certainly, in an individual firm or particular industry, which can expand or contract as the wage it must pay changes, scale effects on employment demand are relevant. For an entire economy, in which output may be assumed constant at full employment, (4a) and (4b) are the correct measures of the long-run effect of changes in the wage rate on factor demand.

All of these measures assume that both factors are supplied elastically to the firm. If they are not, the increase in employment implicit in (4a') when the wage decreases cannot be complete: the labor that is demanded may not be available; and the additional capital services whose presence raises the marginal product of labor ($F_{LK} > 0$) also may not be. In such cases the demand elasticities are reduced [see Hicks (1964, appendix)]. Though such cases may be important, we ignore them in this chapter (though we do deal with the polar case in which the wage depends upon the level of exogenous employment).

An alternative approach makes use of cost minimization subject to an output constraint. Total cost is the sum of products of the profit-maximizing input demands and the factor prices. It can be written as

$$C = C(w, r, Y), \quad C_i > 0, \quad C_{ij} > 0, \quad i, j = w, r,$$

\hfill (5)
since the profit-maximizing input demands were themselves functions of input prices, the level of output, and technology. By Shephard’s lemma [see Varian (1978, p. 32)] the firm’s demand for labor and capital at a fixed output Y can be recovered from the cost function (5) as

$$L^* = C_w$$

(6a)

and

$$K^* = C_r.$$

(6b)

Intuitively, the cost-minimizing firm uses inputs in a ratio equal to their marginal effects on costs. The forms (6) are particularly useful for estimation purposes since they specify the inputs directly as functions of the factor prices and output.

Using eqs. (6) and the result that $C(w, r, Y) = YC(w, r, 1)$ if Y is linear homogeneous, the elasticity of substitution can be derived [see Sato and Koizumi (1973)] as

$$\sigma = \frac{CC_{wr}}{C_wC_r}.$$

(7)

Note that the elasticity of substitution derived from a cost function looks strikingly similar to that derived from a production function. Obviously they are equal, suggesting that the form one chooses to measure σ should be dictated by convenience.

The factor-demand elasticities can be computed as

$$\eta_{LL} = -[1 - m]\sigma$$

(8a)

and

$$\eta_{LK} = [1 - m]\sigma,$$

(8b)

where m is the share of labor in total costs. Since by assumption factors are paid their marginal products, and the production and cost functions are linear homogeneous, $m = s$, and (8a) and (8b) are equivalent to (4a) and (4b).

We are now in a position to prove (4a') easily following Dixit (1976, p. 79). If we continue to assume constant returns to scale, we can reasonably treat the firm as an industry and write industry factor demand as

$$L = YC_w$$

(6a')
Under competition firms equate price, p, to marginal and average cost:

$$p = C.$$

Noting that if markets clear, so that output equals industry demand $D(p)$, we obtain:

$$\frac{\partial L}{\partial w} = YC_{ww} + D'(p)C_w^2.$$

Because C is linear homogeneous, $C_{ww} = (-r/w)C_{wr}$. Substituting for C_{ww}, then from (7) for C_{wr}, and then for C_w and C_r from (6a') and (6b'):

$$\frac{\partial L}{\partial w} = \frac{rK + \sigma L}{Y} \frac{D'(p) C_r^2}{wC}.$$

To put this into the form of an elasticity, multiply both sides by pw/pL, and remember that $p = C$:

$$\eta_{LL} = \frac{-rK}{p} \frac{SD'(p) wL}{Y} \frac{1 - [1 - s] \alpha - s \eta}{pY} = -[1 - s] \alpha - s \eta,$$

by the definition of factor shares under linear homogeneity.

The production or cost functions can also be used to define some concepts that are extremely useful when examining markets in which real factor prices are flexible and endogenous, but factor supplies are fixed (and, because of the flexibility of input prices, are fully employed). The converse of asking, as we have, what happens to the single firm's choice of inputs in response to an exogenous shift in a factor price is to ask what happens to factor prices in response to an exogenous change in factor supply. Define the elasticity of complementarity as the percentage responsiveness of relative factor prices to a 1 percent change in factor inputs:

$$c = \frac{\partial \ln(w/r)}{\partial \ln(K/L)}.$$

This is just the inverse of the definition of σ. Thus,

$$c = \frac{1}{\sigma} = \frac{C_w C_r}{CC_{wr}} = \frac{YF_{LK}}{F_{L}F_{K}}.$$
In the two-factor case in which the production technology is linear homogeneous, one can find the elasticities of substitution and of complementarity equally simply from production and cost functions; and, having found one of them, the other is immediately available.

Given constant marginal costs, the *elasticities of factor price* (of the wage rate and the price of capital services) are defined as

\[\varepsilon_{ww} = -\left[1 - m\right]c \] \hspace{1cm} \text{(11a)}

and

\[\varepsilon_{rw} = \left[1 - m\right]c. \] \hspace{1cm} \text{(11b)}

Equation (11a) states that the percentage decrease in the wage rate necessary to accommodate an increase in labor supply *with no change* in the marginal cost of the product is smaller when the share of labor in total costs is larger (because labor's contribution to costs—a decrease—must be fully offset by a rise in capital's contribution in order to meet the condition that marginal cost be held constant).

Consider now some examples of specific production and cost functions.

2.1. *Cobb–Douglas technology*

The production function is

\[Y = L^aK^{1-a}, \] \hspace{1cm} \text{(12)}

where \(a\) is a parameter; marginal products are

\[\frac{\partial Y}{\partial L} = \frac{Y}{L} \] \hspace{1cm} \text{(13a)}

and

\[\frac{\partial Y}{\partial K} = \left[1 - a\right] \frac{Y}{K}. \] \hspace{1cm} \text{(13b)}

Since the ratio of (13a) to (13b) is \(w/r\) if the firm is maximizing profits, taking logarithms and differentiating with respect to \(\ln(w/r)\) yields \(\sigma = 1\). Equations
(4a) and (4b) imply
\[\eta_{LL} = -[1 - \alpha] \quad \text{and} \quad \eta_{LK} = 1 - \alpha. \]

Minimizing total costs subject to (12), one can derive [Varian (1978, p. 15)] the demand functions for \(L \) and \(K \), and thus the cost function. The latter reduces to
\[C(w, r, Y) = Z w^\alpha r^{1-\alpha} Y, \quad (14) \]
where \(Z \) is a constant. Using Shephard's lemma, one can again derive
\[\frac{L}{K} = \frac{\alpha}{1 - \alpha} \frac{r}{w}. \quad (15) \]
Taking logs, the calculation that \(\sigma = 1 \) follows immediately. It is also clear from (15) that \(c = 1 \).

2.2. Constant elasticity of substitution technology

The linear homogeneous production function is
\[Y = \left[\alpha L^\rho + (1 - \alpha) K^\rho \right]^{1/\rho}, \quad (16) \]
where \(\alpha \) and \(\rho \) are parameters. Marginal products are\(^1\)
\[\frac{\partial Y}{\partial L} = \alpha \left(\frac{Y}{L} \right)^{1-\rho}, \quad (17a) \]
and
\[\frac{\partial Y}{\partial K} = (1 - \alpha) \left(\frac{Y}{K} \right)^{1-\rho}. \quad (17b) \]
Setting the ratio of (17a) to (17b) equal to the factor-price ratio, taking logarithms, differentiating with respect to \(\ln(w/r) \), and making \(\sigma \geq 0 \), yields:
\[-\frac{\partial}{\partial \ln(w/r)} \frac{\ln(L/K)}{\ln(w/r)} = \sigma = \frac{1}{\rho} \]
\[\quad \text{(18)} \]
\(^1\)The little trick to derive (17a) and (17b) is to remember that, after having done the grubby arithmetic, the numerator is just \(Y \) raised to the power \(1 - \rho \).
The CES is sufficiently general that any value of \(\rho < 1 \) is admissible, and the relationship (18) can be used to estimate \(\sigma \).

Among special cases are: (a) the Cobb–Douglas function \(\rho = 0 \), as should be clear from (18); (b) the linear function \(\rho = 1 \), in which \(L \) and \(K \) are perfect substitutes [go back to (3), and note that if \(\rho = 1 \), so that (16) is linear and \(F_{L,K} = 0 \), \(\sigma = \infty \)] and (c) the Leontief function \(\rho = -\infty \), in which output is the minimum function \(Y = \min\{L, K\} \), and the inputs are not substitutable at all.\(^2\) The constant-output factor-demand elasticities in each case follow immediately from the definitions and the recognition that \(\alpha \) is labor’s share of revenue if the factors are paid their marginal products.

The CES cost function can be derived [Ferguson (1969, p. 167)] as

\[
C = Y \left[\alpha^\sigma w^{1-\sigma} + [1 - \alpha]^\sigma r^{1-\sigma} \right]^{1/(1-\sigma)},
\]

where, as before, \(\sigma = 1/[1 - \rho] \geq 0 \). The demand for labor is

\[
L = \frac{\partial C}{\partial w} = \alpha^\sigma w^{-\sigma} Y. \tag{19}
\]

Taking the ratio of (19) to the demand for \(K \), the elasticity of substitution can again be shown to be \(\sigma \).

In both of these examples it is very straightforward to derive \(c \) first, then derive \(\sigma \) as its inverse. It is worth noting for later examples and for the multi-factor case that \(c \) is more easily derived from eqs. (17) and the factor-price ratio (since \(w/r \), the outcome, appears alone), than from (19) and the demand for capital. \(\sigma \) is more readily derived from the cost function, since the ratio \(L/K \) appears alone. Obviously in the two-factor case the simple relation (10) allows one to obtain \(c \) or \(\sigma \) from the other; but the ease of obtaining \(c \) or \(\sigma \) initially differs depending on which function one starts with, a different that is magnified in the multi-factor case.

Two other specific functional forms, the generalized Leontief form of Diewert (1971) and the translog form [Christensen et al. (1973)], are second-order approximations to arbitrary cost or production functions. Each has the advantage over the CES function in the two-factor case that \(\sigma \) (or \(c \)) is not restricted to be constant, but instead depends on the values of the factor inputs or prices. In each case we examine here only the cost function.

\(^2\) The arithmetic that demonstrates this is in Varian (1978, p. 18).
2.3. **Generalized Leontief**

\[C = Y\left\{ a_{11}w + 2a_{12}w^{0.5}r^{0.5} + a_{22}r \right\} , \]
(20)

where the \(a_{ij} \) are parameters. Applying Shephard’s lemma to (20) for each input, and taking the ratios:

\[\frac{L}{K} = \frac{a_{11} + a_{12}(w/r)^{-1/2}}{a_{22} + a_{12}(w/r)^{1/2}}. \]
(21)

As is easily seen from (21), in general

\[\sigma = - \frac{\partial \ln \left(\frac{L}{K} \right)}{\partial \ln \left(\frac{w}{r} \right)} \]

depends on all three parameters and the ratio \(w/r \). Under restrictive assumptions (20) reduces to some of the examples we have already discussed. If \(a_{12} = 0 \), it becomes a Leontief function (since the ratio \(L/K \) is fixed). If \(a_{11} = a_{22} \), it becomes a Cobb–Douglas type function.

2.4. **Translog**

\[\ln C = \ln Y + a_0 + a_1 \ln w + 0.5b_1[\ln w]^2 + b_2 \ln w \ln r + 0.5b_3[\ln r]^2 + [1 - a_1] \ln r, \]
(22)

where the \(a_i \) and \(b_i \) are parameters. Applying Shephard’s lemma to each input, and taking the ratios:

\[\frac{L}{K} = \frac{r}{w \left[1 - a_1 \right] + b_2 \ln w + b_3 \ln r}. \]
(23)

Again \(\sigma \) depends on all parameters and both factor prices. Under specific circumstances (\(b_i = 0 \) for all \(i \)), the cost function reduces to a Cobb–Douglas technology.

Both the generalized Leontief and translog functions may be useful for empirical work (see below), even when written out as in (20) and (22). Each has the virtue of allowing flexibility and containing some simpler forms as special cases. That suggests that they should supplant the Cobb–Douglas and CES functions even for empirical work involving just two inputs.
Throughout this section we have assumed the production and cost functions are linear homogeneous. This also implies they are homothetic: factor demand is such that the ratio of factor inputs is independent of scale at each factor-price ratio. This assumption may not always make sense. For example, large firms may be better able to function with a more capital-intensive process at given w and r than are small firms.

In the general case nonhomotheticity means that the production function cannot be written as

$$ Y = G\left(F\left[L, K\right]\right), $$

where G is monotonic and F is linear homogeneous. Alternatively, the cost function cannot be expressed as [Varian (1978, p. 49)]:

$$ C(w, r, Y) = C^1(Y)C^2(w, r), $$

i.e. output is not separable from factor prices. Some special cases are useful for estimation; and a nonhomothetic CES-type function [Sato (1977)] and translog form [Berndt-Khaled (1979)] have been used.

3. Several factors – the theory

Mathematically the theory of demand for several factors of production is just a generalization of the theory of demand for two factors presented in the previous section. Empirically, though, the generalization requires the researcher to examine a related aspect of factor demand that is not present when the set of inputs is classified into only two distinct aggregates. The issue is illustrated when one considers a three-factor world, for example three types of labor, L_1, L_2 and L_3. One could assume that production is characterized by

$$ Y = F\left(G\left(L_1, L_2\right), L_3\right), $$

where F and G are two-factor production functions of the kind we discussed above. The difficulty with (24) is that the aggregation of L_1 and L_2 by the function G is a completely arbitrary description of technology. Far better to devise some method that allows this particular aggregation to be a subcase whose validity can be tested. This problem, one of separability of some factors from other(s), provides the major reason why labor economists must be interested in multi-factor labor demand. As an example, it means that one should not, as has been done by, for example, Dougherty (1972), combine pairs of labor subaggregates by hierarchies of two-factor CES functions. Intuitively this is because changes in the amount of one type of labor in a particular subaggregate could affect the ease of substitution between two groups of labor that are arbitrarily included in another subaggregate. If so, one will draw incorrect inferences about
the ease of substitution between the latter two factors (and about the cross-price demand elasticities).

Consider a firm (industry, labor market, economy) using \(N\) factors of production, \(X_1, \ldots, X_N\). Let the production function be

\[
Y = f(X_1, \ldots, X_N), \quad f_1 > 0, \quad f_{ii} < 0. \tag{25}
\]

Then the associated cost function, based on the demands for \(X_1, \ldots, X_N\), is

\[
C = g(w_1, \ldots, w_N, Y), \quad g_i > 0, \tag{26}
\]

where the \(w_i\) are the input prices. As in the two-factor case:

\[
f_i - \lambda w_i = 0, \quad i = 1, \ldots, N; \tag{27}
\]

and, using the cost function:

\[
X_i - \mu g_i = 0, \quad i = 1, \ldots, N, \tag{28}
\]

where \(\lambda\) and \(\mu\) are Lagrangian multipliers.

The technological parameters can be defined using either the equilibrium conditions based on the production function [(25) and (27)] or those based on the cost function [(26) and (28)]. Allen (1938) used \(f\) to define the partial elasticity of substitution, the percentage effect of a change in \(w_i/w_j\) on \(X_i/X_j\) holding output and other input prices constant, as

\[
\sigma_{ij} = \frac{Y}{X_i X_j} \frac{F_{ij}}{|F|}, \tag{29}
\]

where

\[
|F| = \begin{vmatrix}
0 & f_1 & \cdots & f_n \\
\vdots & \ddots & \ddots & \vdots \\
f_{ij} & \ddots & \ddots & f_{ij} \\
f_{N} & \cdots & f_{NN} & 0
\end{vmatrix},
\]

the bordered Hessian determinant of the equilibrium conditions (25) and (27), and \(F_{ij}\) is the cofactor of \(f_{ij}\) in \(F\).

The definition in (29) is quite messy. An alternative definition based on the cost function is

\[
\sigma_{ij} = \frac{C g_{ij}}{g_i g_j}. \tag{30}
\]
[Note the similarity to the definition of \(\sigma \) in (7) in the two-factor case. Note also that the definition in (30) requires knowledge only of a few derivatives of (26), unlike that of (29), which requires a complete description of the production function.]

If one differentiates the system (25) and (27) totally, the comparative-static equations are

\[
\begin{bmatrix}
\frac{d\lambda}{\lambda} \\
\frac{dX_1}{dY} \\
\vdots \\
\frac{dX_N}{dW}\n\end{bmatrix} = \begin{bmatrix}
\frac{dY}{dw_1/\lambda} \\
\vdots \\
\frac{dw_N/\lambda}{.}\n\end{bmatrix}.
\]

(31)

Holding \(Y \) and all other \(w_k \) constant:

\[
\frac{\partial X_i}{\partial w_j} = \frac{F_{ij}}{\lambda|F|}.
\]

(32)

Multiplying the numerator and denominator of (32) by \(w_jX_iX_jY \):

\[
\frac{\partial \ln X_i}{\partial \ln w_j} = \eta_{ij} = \frac{f_jX_j}{Y} \cdot \sigma_{ij} = s_j\sigma_{ij},
\]

(33)

where the last equality results from the assumptions that factors are paid their marginal products and \(f \) is linear homogeneous.\(^3\) The \(\eta_{ij} \), factor demand elasticities, can, of course, be calculated more readily using the definition of \(\sigma_{ij} \) based on (26).

Since \(\eta_{ii} < 0 \) (and thus \(\sigma_{ii} < 0 \)), and since \(\sum_j \eta_{ij} = 0 \) (by the zero-degree homogeneity of factor demands in all factor prices), it must be the case that at least one \(\eta_{ij} > 0 \), \(j \neq i \). But (and what makes the multi-factor case interesting) some of the \(\eta_{ij} \) may be negative for \(j \neq i \).

The partial elasticity of complementarity between two factors is defined using the production function as

\[
c_{ij} = \frac{Yf_{ij}}{f_if_j}.
\]

(34)

[Here the definition is just a generalization of (10).] The \(c_{ij} \) show the percentage

\(^3\) One might wonder how, if \(\eta_{L} = [1 - s_L]\sigma \) in the two-factor case, \(\eta_{LL} = s_L\sigma_{LL} \) in the multi-factor case when we assume \(N = 2 \). Remembering that \(f_k\sigma_{kL} + s_k\sigma_{kL} = 0 \), \(\eta_{LL} = -s_k\sigma_{kL} \). Since \(s_k^2 = 1 - s_L \), and \(\sigma_{kL} \) is just alternative notation for \(\sigma \), the two representations are identical.
effect on w_i/w_j of a change in the input ratio X_i/X_j, holding marginal cost and other input quantities constant.

The c_{ij} can also be defined from the cost function [from the system of eqs. (26) and (28)] in a way exactly analogous to the definition of σ_{ij} from the production function

$$c_{ij} = \frac{C}{w_iw_j} \frac{G_{ij}}{|G|},$$

(35)

where $|G|$ is the determinant of the bordered Hessian matrix that results from totally differentiating (26) and (28), and G_{ij} is the cofactor of g_{ij} in that matrix [see Sato–Koizumi (1973, p. 48)]. Note that unlike the two-factor case, in which $c = 1/\sigma$, $c_{ij} \neq 1/\sigma_{ij}$.

The result of totally differentiating (26) and (28) under the assumption that G is linear homogeneous is

$$\left[\begin{array}{c} \frac{dY/Y}{dX_j} \\ \frac{dw_1}{dX_j} \\ \vdots \\ \frac{dw_N}{dX_j} \end{array} \right] = \frac{Yd\mu}{dX_j}.$$

(36)

Solving in (36) for $\partial w_i/\partial X_j$:

$$\frac{\partial w_i}{\partial X_j} = \frac{G_{ij}}{|G|}.$$

(37)

Multiply both numerator and denominator in (37) by $Cw_iw_jX_j$ to get

$$\frac{\partial \ln w_i/\partial \ln X_j} = \epsilon_{ij} = s_jc_{ij},$$

(38)

the partial elasticity of factor price i with respect to a change in the quantity X_j. Since $\epsilon_{ij} = s_jc_{ij} < 0$, and $\sum_j s_jc_{ij} = 0$, $c_{ij} > 0$ for at least some factors. It is quite possible, though, that there are factors for which $\epsilon_{ij} < 0$ for some $j \neq i$, i.e. for which an exogenous increase in the quantity of input j reduces the price of input i at a constant marginal cost.

The partial elasticities of demand and of factor prices can be used to classify pairs of factor inputs. Using the ϵ_{ij}, inputs i and j are said to be q-complements if $\epsilon_{ij} = s_jc_{ij} > 0$, q-substitutes if $\epsilon_{ij} < 0$. [Note that it is possible for all input pairs (i, j) to be q-complements.] Using the η_{ij}, inputs i and j are said to be p-complements if $\eta_{ij} = s_j\sigma_{ij} < 0$, p-substitutes if $\eta_{ij} > 0$. [Note that it is possible
for all input pairs \((i, j)\) to be \(p\)-substitutes.] If there are only two inputs, they must be \(q\)-complements and \(p\)-substitutes.\(^4\)

The use of these definitions should be clear, but some examples may demonstrate it better. If skilled and unskilled labor are \(p\)-substitutes, one may infer that a rise in the price of skilled labor, perhaps resulting from an increase in the ceiling on payroll taxes, will increase the mix of unskilled workers in production. These two factors may also be \(q\)-complements. If so, an increase in the number of skilled workers (perhaps resulting from increased awareness of the nonpecuniary benefits of acquiring a college education) will raise the wage of unskilled workers by increasing their relative scarcity.

The concepts developed in this section can be illustrated by a number of the specific functional forms that have been used in the literature to estimate production/cost relations describing several inputs.

3.1. **Multi-factor Cobb–Douglas and CES functions**

These are just logical extensions of the two-factor cases. The \(N\)-factor Cobb–Douglas cost function can be written as

\[
C = Y \prod_i w_i^{\alpha_i}, \quad \sum \alpha_i = 1. \tag{39}
\]

Each \(o_{ij} = 1\) (just apply (30) to (39)), making this function quite uninteresting in applications where one wishes to discover the extent of \(p\)-substitutability or examine how substitution between \(X_i\) and \(X_j\) is affected by the amount of \(X_k\) used. That \(c_{ij} = 1\) can be readily derived from a generalization of the argument in (13)–(15).

The \(N\)-factor CES production function is

\[
Y = \left[\sum \beta_i X_i^\rho \right]^{1/\rho}, \quad \sum \beta_i = 1. \tag{40}
\]

As with the \(N\)-factor Cobb–Douglas function, the technological parameters are not interesting:

\[
c_{ij} = 1 - \rho, \quad \text{for all } i \neq j.
\]

The degree of substitution within each pair of factors is restricted to be identical.

\(^4\)A good mnemonic for these distinctions is that the \(q\) and \(p\) refer to the exogenous quantities and prices whose variation is assumed to produce changes in endogenous input prices and quantities respectively.
A slightly more interesting case is that of the two-level CES function containing \(M \) groups of inputs, each of which contains \(N_i \) individual inputs:

\[
Y = \left(\left[\sum_{i}^{N_i} \alpha_i X_i^\rho_j \right]^{1/\rho_j} + \cdots + \left[\sum_{N_i}^{N_M} \alpha_k X_k^\rho_k \right]^{1/\rho_k} \right)^{1/\rho_i}, \quad \sum_{i=1}^{N_M} \alpha_i = 1, (41)
\]

where the \(\rho_j \) and \(\nu \) are parameters to be estimated. Equation (41) is the same as (40), except that groups of factors aggregated by CES subfunctions are themselves aggregated by a CES function with parameter \(\nu \). For factors within the same subaggregate:

\[
c_{ij} = 1 - \rho_k, \quad k = 1, \ldots, M.
\]

For factors in different subgroups, \(c_{ij} = 1 - \nu \). While (41) is less restrictive than (40), it still imposes the assumption that the ease of substitution is the same between all pairs of factors not in the same subgroup; and it also imposes separability—substitution within a subgroup is unaffected by the amount of inputs from other subgroups.

3.2. Generalized Leontief

The cost function, an expanded version of (20), is

\[
C = Y \sum_{i} \sum_{j} a_{ij} w_i^{0.5} w_j^{0.5}, \quad a_{ij} = a_{ji}. (42)
\]

The technological parameters can be estimated from

\[
X_i = a_{ii} + \sum_{j} a_{ij} \left[w_j / w_i \right]^{0.5}, \quad i = 1, \ldots, N. (43)
\]

The partial elasticities of substitution are

\[
\sigma_{ij} = \frac{a_{ij}}{2 \left[X_i X_j s_i s_j \right]^{0.5}},
\]

and

\[
\sigma_{ii} = \frac{a_{ii} - X_i}{2 X_i s_i}.
\]
To derive the σ_{ij} from this functional form, one need only know those parameters that involve factors i and j. A production function analogous to (42) can be used to derive the c_{ij} easily (and the σ_{ij} with great effort!).

3.3. Translog

In general the translog cost function is

$$\ln C = \ln Y + a_0 + \sum_i a_i \ln w_i + 0.5 \sum_i \sum_j b_{ij} \ln w_i \ln w_j,$$

(44)

with

$$\sum_i a_i = 1; \quad b_{ij} = b_{ji}; \quad \sum_i b_{ij} = 0, \quad \text{for all } j.$$

(45)

The first and third equalities in (45) result from the assumption that C is linear homogeneous in the w_i (proportionate increases in the w_i raise costs proportionately). By Shephard's lemma:

$$\frac{\partial \ln C}{\partial \ln w_i} = \frac{X_i w_i}{C} = s_i, \quad i = 1, \ldots, N,$$

(46)

where both sides of the factor demand equation have been multiplied by w_i/C, and we have assumed factors receive their marginal products.

The reason for writing (46) as it is rather than as a set of factor-demand functions is that, while the latter are nonlinear in the parameters, (46) is linear:

$$s_i = a_i + \sum_{j=1}^N b_{ij} \ln w_j, \quad i = 1, \ldots, N.$$

(47)

The partial elasticities of substitution are

$$\sigma_{ij} = \frac{[b_{ij} + s_i s_j]}{s_i s_j}, \quad i \neq j,$$

and

$$\sigma_{ii} = \frac{[b_{ii} + s_i^2 - s_i]}{s_i^2}.$$

The σ_{ij} can also be calculated from a translog production specification, but to do so requires using (29), and thus the determinant of what could be a large

\footnote{To derive σ_{ij}, perform the required differentiation and remember that $g_i = X_i$.}
Table 8.1
Summary of functional forms.

<table>
<thead>
<tr>
<th>Theoretical forms</th>
<th>Estimating forms and demand elasticities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cobb–Douglas</td>
<td></td>
</tr>
<tr>
<td>(a) Cost</td>
<td></td>
</tr>
<tr>
<td>$C = Y^a \prod w_i^{n_i}$; $a = 1$ if CRS</td>
<td>$\ln C/Y = \sum \alpha_i \ln w_i$</td>
</tr>
<tr>
<td>(b) Production</td>
<td></td>
</tr>
<tr>
<td>$Y = \prod X_i^{n_i}; \Sigma \beta_i = 1$ if CRS</td>
<td>$\ln Y = \sum \beta_i \ln X_i$; \hspace{1em} $\eta_{ii} = [1 - \beta_i]$;</td>
</tr>
<tr>
<td>2. CES</td>
<td></td>
</tr>
<tr>
<td>(a) Cost</td>
<td></td>
</tr>
<tr>
<td>$C = Y^a \left[\sum \alpha_i w_i^{a(1 - \sigma)} \right]^{1/(1 - \sigma)}$, $a = 1$ if CRS</td>
<td>$\ln X_i = a_0 + \sigma \ln w_i + a \ln Y$; \hspace{1em} $\eta_{ii} = s_i \sigma$;</td>
</tr>
<tr>
<td>(b) Production</td>
<td></td>
</tr>
<tr>
<td>$Y = \left[\sum \beta_i X_i \right]^{b/p}$, $b = 1$ if CRS</td>
<td>Little use</td>
</tr>
<tr>
<td>3. Generalized Leontief</td>
<td></td>
</tr>
<tr>
<td>(a) Cost</td>
<td></td>
</tr>
<tr>
<td>$C = Y \sum a_{ij} w_i^{0.5} w_j^{0.5}$, $a_{ij} = a_{ji}$</td>
<td>$X_i = a_{ij} + \sum a_{ij} [w_j/w_i]^{0.5}$, $i = 1, \ldots, N$;</td>
</tr>
<tr>
<td>(b) Production</td>
<td></td>
</tr>
<tr>
<td>$Y = \sum b_{ij} X_i^{0.5} X_j^{0.5}$, $b_{ij} = b_{ji}$</td>
<td>$w_i = b_{ij} + \sum b_{ij} [X_j/X_i]^{0.5}$, $i = 1, \ldots, N$</td>
</tr>
<tr>
<td>4. Translog</td>
<td></td>
</tr>
<tr>
<td>(a) Cost</td>
<td></td>
</tr>
<tr>
<td>$\ln C/Y = a_0 + \Sigma a_i \ln w_i + 0.5 \Sigma \sum b_{ij} \ln w_j \ln w_i$</td>
<td>$s_i = a_i + \sum b_{ij} \ln w_j$; $i = 1, \ldots, N$</td>
</tr>
<tr>
<td>(b) Production</td>
<td></td>
</tr>
<tr>
<td>$\ln Y = a_0 + \Sigma \alpha_i \ln X_i + 0.5 \Sigma \sum \beta_{ij} \ln X_j \ln X_i$</td>
<td>$s_i = \alpha_i + \sum \beta_{ij} \ln X_j$; $i = 1, \ldots, N$</td>
</tr>
</tbody>
</table>
matrix. The production form is useful, though, to derive partial elasticities of complementarity.

These functional forms and the associated production functions are all summarized in Table 8.1 for the multi-factor case. (Though the Cobb-Douglas and CES should not be used when there are more than two factors, I present them here to allow their use in the two-factor case.) The relative merits of and problems with the alternative cost and production tableaux are discussed in the next sections.

4. Homogeneous labor—estimation and empirical issues

In this section we deal with the problems involved in estimating the demand for homogeneous labor. We examine how one estimates the demand parameters under the assumption that all units of labor are identical. The parameters of interest, the labor-demand elasticity and the cross-price and substitution elasticities, have been produced both in the two-factor and the multi-factor cases. We discuss both issues of how the estimating equations are to be specified, and how they are to be estimated and the results interpreted.

4.1. Specification

The first approach to estimation relies on the production or cost function “directly”. In the case of the Cobb-Douglas function this method produces the distribution parameters. (If, for example, data on factor prices are unavailable, these parameter estimates are necessary to compute the factor-demand elasticities. If data on shares can be computed, there is no reason to estimate such a function.) Estimating a CES function directly is, an inspection of (16) shows, not easy, so the direct approach does not apply here. The generalized Leontief and translog approximations can be estimated directly (either in their cost or production function forms). Though little work has relied upon this approach, it is quite feasible in the two-factor case. In the multi-factor case the problem of multicollinearity ($N + 1$ terms involving each factor of production are included in the translog approximation, N in the generalized Leontief approximation) becomes severe [but see Hansen et al. (1975)]. With more than one other factor included, direct estimation should not be done unless one arbitrarily imposes a multi-factor Cobb-Douglas technology.

The second approach uses labor-demand conditions, either from the marginal productivity condition (2a) or the Shephard condition (6a). In the simplest case, a CES function, this means estimating an equation like

$$\ln L = a_0 + \sigma \ln w_L + a_1 \ln Y,$$

(48)
where the a_i are parameters, with $a_1 = 1$ if the production function is characterized by constant returns to scale. Indeed, estimating (48) without constraining a_1 to equal one is the standard way of testing for constant returns to scale when estimating the labor-demand equation. In the generalized Leontief and translog cases the amount of labor demanded is a nonlinear function of the factor prices, which makes these approaches inconvenient.

In the multi-factor case the labor-demand approach involves the estimation of an equation like

$$\ln L = \sum b_i \ln w_i + a_1 \ln Y, \quad \sum b_i = 0, \quad (49)$$

where one can test for constant returns to scale ($a_1 = 1$). Clearly, (49) should be viewed as part of a complete system of factor-demand equations; if data on all factor quantities are available, a complete system should be estimated. If not, though, (49) will provide all the necessary estimates, for

$$\frac{\partial \ln L}{\partial \ln w_i} = \left[s_i / s_L \right] \frac{\partial \ln X_i}{\partial \ln w_L}.$$

The multi-factor labor-demand approach provides a useful way of testing whether the condition that the demand for labor be homogeneous of degree zero in factor prices holds, and whether it is homogeneous of degree one in output. A similar approach can be used to examine a wage equation specified as a linear function of the logarithms of all factor quantities.

Yet a third approach may be called the relative factor demand method. In the two-factor CES case this just involves estimation of (18), with $\ln L/K$ as a dependent variable, from which the demand elasticities can be calculated. Some research has used this method, but none has used (21) or (23) directly.

The relative factor-demand method should not be used in the multi-factor case, for it involves the estimation of all pairs of equations like (18), in the CES case, or like (21) and (23) in the more general cases. While there is nothing inherently wrong with this approach, it prevents the imposition of the restrictions that factor demand be homogeneous of degree zero in all factor prices. Since that restriction is a postulate of the theory, the specification that prevents the researcher from imposing or at least testing it does not seem desirable.

One should note that the slope parameter on $\ln w_L$ in (48) is not the usual constant-output labor-demand elasticity, and that the latter needs to be calculated from the estimate using (4a). It is also worth noting that (48) is a transformation of the equation used by Arrow et al. (1962) to estimate the elasticity of substitution in the CES function they had proposed: Under constant returns to scale (48) can be written as

$$\ln Y/L = -a_0 - \sigma w_L,$$

the form originally used to estimate σ.

6 One should note that the slope parameter on $\ln w_L$ in (48) is not the usual constant-output labor-demand elasticity, and that the latter needs to be calculated from the estimate using (4a). It is also worth noting that (48) is a transformation of the equation used by Arrow et al. (1962) to estimate the elasticity of substitution in the CES function they had proposed: Under constant returns to scale (48) can be written as

$$\ln Y/L = -a_0 - \sigma w_L,$$

the form originally used to estimate σ.

D. S. Hamermesh
The fourth approach is to estimate the demand for labor as a part of a system of equations based upon one of the approximations, like the generalized Leontief or translog forms that we discussed in Section 3. Even in the two-factor case a single equation like (47) for \(i = L \) could be used, with the only parameters to be estimated being the constant term and the slope on \(\ln(w_L/w_j) \) (since the homogeneity restrictions make an equation for the other factor redundant and the coefficients on \(\ln w_L \) and \(\ln w_j \) equal and of opposite sign). In the case of several factors homogeneous labor becomes one of the factors in a system of \(N - 1 \) equations. These are the share equations for the translog approximation, or eqs. (43) for the generalized Leontief approximation.

Throughout the discussion in this section we have dealt only with methods of estimating the constant-output labor-demand elasticity. As we indicated in Section 2, in the short run, or for individual firms, sectors or industries, a change in the price of labor will induce a change in output (especially if a small industry is the unit of observation). The effect of the output change can be measured indirectly or directly. The indirect approach simply takes some extraneous estimate of the demand elasticity for the product of the industry, and uses (4a') to derive a labor-demand elasticity that includes the scale effect. A direct approach would estimate equations like (48) and (49) but with output \((Y) \) deleted.

4.2. Measurement and interpretation issues

There are many data considerations in estimating elasticities involving labor demand; we concentrate here only on problems concerning the measurement of \(L \) and \(w \). The simpler issue is the choice of a measure of the quantity \(L \). In the literature the alternatives have mostly been total employment and total hours. Clearly, if workers are homogeneous, working the same hours per time period, the choice is irrelevant. If they are heterogeneous along the single dimension of hours worked per time period, using number of workers to represent the quantity of labor will lead to biases if hours per worker are correlated with factor prices or output. In studies using cross-section data, in which there may be substantial heterogeneity among plants, firms or industries in hours per worker, this consideration suggests that total hours be used instead of employment. In time-series data (on which most of the estimates of demand elasticities for homogeneous labor are based) the choice is probably not important, since there is relatively little variation in hours per worker over time. However, if one is also interested in dynamics of labor demand, the choice is crucial, for there are significant differences in the rates at which employment and hours adjust to exogenous shocks (see Nickell, Chapter 9 in this Handbook).

The choice of a measure of the price of labor is more difficult. Most of the published data from developed countries are on average hourly earnings or
average wage rates. A few countries publish data on compensation (employers' payments for fringes and wages per hour on the payroll). While most of the studies of the demand for homogeneous labor use one of the first two measures, none of these three is satisfactory. There are two problems: (1) variations in the measured price of labor may be the spurious result of shifts in the distribution of employment or hours among subaggregates with different labor costs, or of changes in the amount of hours worked at premium pay; and (2) data on the cost of adding one worker (or one hour of labor services) to the payroll for one hour of actual work are not available.

The first problem can be solved in studies of labor demand in the United States using the adjusted earnings series covering most of the postwar period for the private nonfarm economy. The second problem is soluble (except for labor costs resulting from inputs into training) for studies of the United States labor market beginning in 1977 by the Employment Cost Index that the Bureau of Labor Statistics has produced. Clearly, future work using aggregate data should rely upon that index. That the distinction is important is shown in Hamermesh (1983), in which a measure of labor cost per hour worked is developed and shown to lead to substantially higher own-price demand elasticities than do average hourly earnings or average compensation measures.

The second measurement issue is what variables if any should be treated as exogenous. Ideally the production or cost function, or labor-demand equation, will be embedded in an identified model including a labor supply relation. In such a case methods for estimating a system of equations are appropriate, and the problem is obviated: both the price and quantity of labor may be treated as endogenous. If a complete system cannot be specified, one may have sufficient variables that are not in the equation based on the cost or production function and that can be used to produce an instrument for the endogenous right-hand side variable. However, given the difficulty of specifying a labor supply relation in the aggregate data on which most studies of labor demand are based, it seems unlikely that a good set of variables can be found.

The choice usually boils down to whether price or quantity can be viewed as exogenous in the problem under study. In studies based on small units—plants, firms, or perhaps even geographical areas—one might well argue that supply curves to those units are nearly horizontal in the long run. If so, the wage rate may be treated as exogenous; and estimates of cost functions, labor-demand equations, or share equations based on factor prices are appropriate (for they include the wage instead of the quantity of labor as an independent variable). In studies using aggregate data this assumption has not been considered valid since Malthusian notions of labor supply were abandoned. If, as many observers believe, the supply of labor to the economy is quite inelastic even in the long run, demand parameters are best estimated using specifications that treat the quantity of labor as exogenous; production functions and variants of second-order approximations that include factor quantities as regressors should be used.
Since in reality it is unlikely that the supply of labor to the units being studied is completely elastic or inelastic, any choice other than estimating production parameters within a complete system including supply is unsatisfactory. However, since supply relations have not been estimated satisfactorily except in certain sets of cross-section and panel data, one is left to make the appropriate choice based on one's beliefs about the likely elasticity of supply to the units, the availability and quality of data, and whether factor-demand elasticities or elasticities of factor prices are of interest.

5. Homogeneous labor – results and problems

5.1. Results with output constant and wages exogenous

Remembering that the chief parameter of interest in analyzing the demand for homogeneous labor is the constant-output own-price elasticity of demand, let us consider a number of studies that have produced estimates of this parameter. I have divided the studies into two main types depending on the specification of the equations estimated: labor-demand studies and production or cost-function studies. All of the latter use either a CES production function or a translog cost function. In the translog cost functions labor is specified as one of several factors of production (with energy, the focus of interest in these studies, included as one of the other factors).

In Table 8.2 I list the classification of the available studies of the constant-output long-run demand elasticity for labor. The estimates are of the absolute value of the own-price elasticity of demand for homogeneous labor. [The studies listed in part I.A are based on relationships like (48); since the values of s_L are unavailable for the particular samples, I present the estimates of $\eta_{LL}/(1 - s_L) = \sigma.$] The estimates in the studies based on a marginal productivity condition imply a measure of the responsiveness of demand that is quite consistent with constant-output demand elasticities holding other factor prices constant of between 0.2 and 0.4 (assuming the share of labor is 2/3, and noticing that the range of most of the estimates is 0.67–1.09). Only Black and Kelejian (1970) and Drazen et al. (1984) among those studies using this approach produce estimates that imply a constant-output demand elasticity holding other factor prices constant that is well below this range. The latter may be an outlier because of the difficulties with the wage data for some of the countries; why the estimates in the former are so low is unclear.

Studies included under part I.B in Table 8.2 in most cases specify the price of capital services in a labor-demand equation that can be viewed as part of a

7The issues from 1975 to 1982 of a large number of journals were searched. For years before 1975 the references are taken from Hamermesh (1976). While we make no claim that our survey is exhaustive, it should give a fair representation of work on this subject.
Table 8.2
Studies of the aggregate employment-wage elasticity.

<table>
<thead>
<tr>
<th>Author and source</th>
<th>Data and industry coverage</th>
<th>η_{LL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Labor demand studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Marginal productivity condition on labor (estimates of $\eta_{LL}/(1 - s)$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dhrymes (1969)</td>
<td>Private hours, quarterly, 1948–60</td>
<td>0.75</td>
</tr>
<tr>
<td>Drazen et al. (1984)</td>
<td>Manufacturing hours, quarterly, 10 OECD countries, mostly 1961–80</td>
<td>0.21a</td>
</tr>
<tr>
<td>Hamermesh (1983)</td>
<td>Private nonfarm, quarterly, based on labor cost, 1955–78</td>
<td>0.47</td>
</tr>
<tr>
<td>Liu and Hwa (1974)</td>
<td>Private hours, monthly, 1961–71</td>
<td>0.67</td>
</tr>
<tr>
<td>Lucas and Rapping (1970)</td>
<td>Production hours, annual, 1930–65</td>
<td>1.09</td>
</tr>
<tr>
<td>Rosen and Quandt (1978)</td>
<td>Private production hours, annual, 1930–73</td>
<td>0.98</td>
</tr>
<tr>
<td>B. Labor demand with price of capital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chow and Moore (1972)</td>
<td>Private hours, quarterly, 1948:IV–1967</td>
<td>0.37b</td>
</tr>
<tr>
<td>Clark and Freeman (1980)</td>
<td>Manufacturing quarterly, 1950–76: Employment</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Manufacturing quarterly, 1947–64: Employment</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Manufacturing quarterly, 1958–74, United Kingdom (materials prices)</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.06b</td>
</tr>
<tr>
<td>C. Interrelated factor demand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coen and Hickman (1970)</td>
<td>Private hours, annual, 1924–40, 1949–65</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nonproduction</td>
</tr>
<tr>
<td>Schott (1978)</td>
<td>British industry, annual, 1948–70: Employment</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hours</td>
</tr>
<tr>
<td>II. Production and cost function studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. CES production functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown and de Cani (1963)</td>
<td>Private nonfarm hours, annual, 1933–58</td>
<td>0.47</td>
</tr>
<tr>
<td>David and van de Klundert (1965)</td>
<td>Private hours, annual, 1899–1960</td>
<td>0.32</td>
</tr>
<tr>
<td>McKinnon (1963)</td>
<td>2-digit SIC manufacturing, annual, 1947–58</td>
<td>0.29a</td>
</tr>
<tr>
<td>B. Translog cost functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berndt and Khaled (1979)</td>
<td>Manufacturing, annual, 1947–71; capital, labor, energy and materials: Homogeneous, neutral technology change</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Nonhomothetic, non-neutral technology change</td>
<td>0.17</td>
</tr>
<tr>
<td>Magnus (1979)</td>
<td>Enterprise sector, annual, 1950–76, Netherlands; capital, labor and energy</td>
<td>0.30b</td>
</tr>
<tr>
<td>Morrison and Berndt (1981)</td>
<td>Manufacturing, annual, 1952–71; capital, labor energy and materials</td>
<td>0.35</td>
</tr>
<tr>
<td>Pindyck (1979)</td>
<td>10 OECD countries, annual, 1963–73; capital, labor and energy</td>
<td>0.43a</td>
</tr>
</tbody>
</table>

*a Simple average of country estimates.

b Estimates calculated at the sample end-point.
complete system of demand equations. The estimates have the virtue that the
own-price demand elasticity is simply the coefficient of $\ln w_L$ in the equation
containing $\ln L$ as the dependent variable. The estimates are substantially lower
than those produced in studies in part I.A that include only the wage rate. However, when one remembers that the estimates in part I.A are of the elasticity
of substitution, the two sets of estimates are in the same fairly narrow range.
Only the estimates based on interrelated factor demand (part I.C in the table) are
below the range implied by the estimates in parts I.A and I.B. Clark and
Freeman (1980) have shown that measures of the price of capital services are
much more variable than measures of wages or earnings (presumably reflecting at
least in part errors of measurement). Studies of interrelated factor demand, by
estimating labor and capital demand simultaneously, inherently base the esti-
mated labor-demand elasticities in part on the responsiveness of the demand for
capital to what is likely to be a poorly measured price of capital. This view
suggests the studies in part I.C of the table probably shed little light on the
demand parameters of interest.

Among the cost and production function studies listed under part II of Table
8.2 there is a remarkable degree of similarity in the implied constant-output
labor-demand elasticity. Given the diversity of specifications, sample periods and
units that are studied, the extent of agreement is astounding. These studies
produce estimates that are roughly in agreement with those listed under parts I.A
and I.B. Again, whether one takes information on other factor prices into
account or not seems to make little difference for the estimates of the labor
demand elasticity. All that is required is that one interpret one's results carefully,
relating the parameter estimates back to the elasticity one is trying to estimate.

Obviously there is no one correct estimate of the constant-output elasticity of
demand for homogeneous labor in the aggregate. The true value of the parameter
will change over time as the underlying technology changes, and will differ
among economies due to differences in technologies. However, a reading of the
estimates in Table 8.2 suggests that, in developed economies in the late twentieth
century, the aggregate long-run, constant-output, labor-demand elasticity lies
roughly in the range 0.15–0.50. While this range is fairly wide, it does at least put
some limits on the claims one might make for the ability of, for example, wage
subsidies to change the relative labor intensity of production at a fixed rate of
output. These limits suggest that the huge empirical literature summarized here
should narrow the debate over what the likely effects would be of any change
imposed on the economy that affects the demand for labor.

An examination of these empirical studies and a consideration of the problems
of specification indicates that the labor-demand elasticity can be obtained from a
marginal-productivity condition, from a system of factor-demand equations,
from a labor-demand equation that includes other factor prices, or from a system
of equations that produces estimates of the partial elasticities of substitution
among several factors of production. Often data on other factor prices will not be so readily available as the wage rate. The lack of differences we have noted between studies that include other factor prices and those that do not suggest the effort devoted to obtaining series on those other prices will not result in major changes in the estimates of the labor-demand elasticity.

5.2. Varying output or endogenous wages

While our major interest is in the constant-output, labor-demand elasticity, it is maybe worth asking a short-run question: What is the elasticity when output can vary, that is, what is a reasonable value for \(\eta' \) in (4a')? The responses to changes in wage rates under these assumptions are obviously of special interest to those concerned with short-run macroeconomic problems. One recent study [Symons and Layard (1983)] examined demand functions for six large OECD economies in which only factor prices, not output, were included as independent variables. The estimates range from 0.4 to 2.6, with four of the six being greater than one. These relatively large estimates suggest, as one should expect from comparing (4a) and (4a'), that there is more scope for an imposed rise in real wages to reduce employment when one assumes output can vary.

The discussion thus far has dealt with the demand for homogeneous labor in the aggregate. Nearly all the studies summarized treat factor prices, including the wage rate, as exogenous. Yet, as we noted in Section 4, this assumption is strictly correct only if the elasticity of labor supply is infinite, which hardly seems correct in those studies based upon data from entire economies. (It is unlikely that the private nonfarm sector can elicit more labor from households without any increase in the market price of time.) The remarkable similarity of the results discussed in this section may merely arise from the authors' use of methods that are similar, but essentially incorrect, and that fail to provide a proper test of the theory of labor demand. Studies based on units of observation to which the supply of labor can be claimed to be truly exogenous thus provide a clearer test of the predictions of the theory of labor demand.

Estimates of labor-demand elasticities for small industries, for workers within a narrowly-defined occupation, for workers within small geographical areas, or even within individual establishments, are less likely to be fraught with problems of simultaneous-equations bias than are the macro time series that underlie the studies summarized in Table 8.2. Unfortunately, relatively little attention has been paid to this problem; but those studies that have treated less aggregated data describing the demand for homogeneous labor are summarized in Table 8.3. The estimates of the constant-output, labor-demand elasticities are quite similar to those summarized in Table 8.2. This suggests that the estimated elasticities that seem to confirm the central prediction of the theory of labor demand are not entirely an artifact produced by using aggregate data.
Table 8.3

Industry studies of labor demand.

<table>
<thead>
<tr>
<th>Author and source</th>
<th>Data and industry coverage</th>
<th>η_{LL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashenfelter and Ehrenberg (1975)</td>
<td>State and local government activities, states, 1958–69</td>
<td>0.67a</td>
</tr>
<tr>
<td>Field and Grebenstein (1980)</td>
<td>2-digit SIC manufacturing, annual, 1947–58</td>
<td>0.29a</td>
</tr>
<tr>
<td>Freeman (1975)</td>
<td>U.S., university faculty, 1920–70</td>
<td>0.26</td>
</tr>
<tr>
<td>Hopcroft and Symons (1983)</td>
<td>U.K. road haulage, 1953–80, capital stock held constant</td>
<td>0.49</td>
</tr>
<tr>
<td>Lovell (1973)</td>
<td>2-digit SIC manufacturing, states, 1958</td>
<td>0.37a</td>
</tr>
<tr>
<td>McKinnon (1963)</td>
<td>2-digit SIC manufacturing, annual, 1947–58</td>
<td>0.29a</td>
</tr>
<tr>
<td>Waud (1968)</td>
<td>2-digit SIC manufacturing, quarterly, 1954–64</td>
<td>1.03a</td>
</tr>
</tbody>
</table>

*aWeighted average of estimates, using employment weights.

One might claim that even these units of observation are not the establishments or firms upon which the theory is based. It is true that, in contrast to the myriad studies of labor supply behavior based on observations on households, there is a shocking absence of research on the empirical microeconomics of labor demand. Thus the most appropriate tests of the predictions of the theory have yet to be made. For those skeptical even of the results in Table 8.3 that are based on data describing occupations or industries, an additional confirmation of the theory is provided by analyses of the effects of the minimum wage. An overwhelming body of evidence [see the summary in Brown et al. (1982)] indicates that imposed, and thus exogenous, changes in minimum wages induce reductions in the employment of workers in those groups whose market wages are near the minimum.

6. Heterogeneous labor—estimation and empirical issues

Most of the methods for specifying and estimating models involving several types of labor carry over from the discussion of homogeneous labor in the previous section. Yet because one is generally interested in many more parameters than in the case of homogeneous labor, there are several considerations that do not arise in that case.

6.1. Specification

If one assumes that there are only two types of labor, and that they are separable from nonlabor inputs, the discussion in the previous section applies and the ways of estimating substitutability between the two factors should be apparent. (But
see below for some problems that arise in this case.) In most instances, though, the problem at hand involves estimating the degree of substitutability among several types of labor (and among them and other factors). In that case, as the discussion in Section 3 should make clear, the restrictive Cobb–Douglas and CES forms will not be appropriate to answer the questions under study except under highly unlikely circumstances.

Two alternatives are possible, with the choice depending on the availability of data: (1) a complete system of factor-demand equations, essentially a series of N equations with the L_i, $i = 1, \ldots, N$, as dependent variables, and the same set of independent variables as in (49); and (2) a system of equations based on one of the flexible approximations to a production or cost function, e.g. the generalized Leontief or translog forms, such as are shown in Table 8.1. (Whether one specifies these systems with factor prices or quantities as independent variables is another issue, which we discuss below.) Each of these approaches requires data on all factor prices and quantities. Each of the approaches using the flexible forms allows the ready inference of the partial elasticities of substitution (or of complementarity) as well as the factor-demand (factor-price) elasticities.

As in the case of homogeneous labor, one would ideally specify factor demands simultaneously with factor supplies and be able to estimate a model that obviates the need to consider whether factor prices or quantities are to be considered exogenous. However, if it is difficult to specify such a model involving homogeneous labor, it seems impossible to do so for a model that includes several types of workers. Accordingly, one must be able to argue that supplies of each type of labor are either completely inelastic or completely elastic in response to exogenous changes.

No satisfactory choice appears to have been made in the studies that have estimated substitution among several types of labor. For example, consider a study that seeks to examine the extent of substitutability among adult women, adult men, youths and capital. It seems reasonable to treat the quantity of adult men in the work force as exogenous, and increasingly also for adult women, but that assumption hardly makes sense for youths whose labor supply appears to be quite elastic. (The supply elasticity of capital is also a problem.) That being the case, the absence of an appropriate set of variables from which to form instruments for the wage or labor quantities used means one must accept some misspecification whether one chooses to treat wages or quantities as exogenous.

As another example, one might argue that the supplies of blue- and white-collar labor to the economy are highly elastic in the long run; but it is unlikely, given the heterogeneity among workers' abilities, that these supplies are com-

8 Remember that this is an economic issue, not a problem of inferring the partial elasticities of substitution or complementarity. In the translog case, for example, those can always be inferred, either easily or by inverting a matrix involving all the coefficients estimated.
pletesely elastic. Even if one believes they are, the long run over which they are infinitely elastic is probably longer than the quarter or year that forms the basic unit of observation of time-series studies that focus on this disaggregation of the work force. That being the case, there is no clear-cut choice dictated by theory alone about whether wages or quantities should be treated as exogenous in this example either.

The problem is not solved by estimating the cost or production parameters using aggregated cross-section data. For example, the persistence of regional wage differentials unexplained by apparent differences in amenities suggests that one cannot claim that labor of all types is supplied perfectly elastically to geographical areas. Thus, using data on metropolitan areas or other geographical subunits does not guarantee that factor prices can be considered exogenous. The same problem arises when data on industries are used: insofar as industries use industry-specific skills, the supply of labor to the industry could well be upwar-d sloping in the long run. The only satisfactory solution, one that has not been tried in practice, is to use data on firms or establishments as the units of observation.

In practice the best guide to the choice between treating wages or quantities as exogenous is the link between this choice and the researcher’s own priors on the supply elasticities of the factors whose demand is being examined (and thus how the misspecification that is induced can be minimized). In the example involving adult females, adult males and youths the overwhelming shares of output are accounted for by the first two groups, whose supply of effort is relatively inelastic. That being so, treating factor quantities as exogenous is probably the better choice. This also means that one should focus the analysis on the elasticities of complementarity and of factor prices, which are estimated more readily using production rather than cost functions (see Section 3).

6.2. Measurement and interpretation issues

Whether labor subaggregates are separable from capital, or whether some groups within the labor force are separable in production from others, is of central importance in empirical work estimating substitution among heterogeneous workers. Consider first the issue of separability of labor subaggregates from capital. In many cases the available data provide no way of obtaining a measure of the price or quantity of capital services. Even if such data are available, they may be measured with much greater error than the data on wage rates or employment in each labor subgroup. If the errors of measurement are large, one might well argue the Cambridge position that the notion of trying to aggregate the capital stock in an economy, or even in a labor market, is senseless. That being the case, one must be sure that labor is separable from capital when one estimates substitution relations among labor subgroups in the absence of a
measure of capital price or quantity. Otherwise, the estimates of labor–labor substitution will be biased.

A similar problem arises when one concentrates on substitution among several subgroups in the labor force and assumes that they are separable from the rest of labor. [For example, Welch and Cunningham (1978) examine substitution among three groups of young workers disaggregated by age under the assumption that the σ_{ij} of each for adult workers are identical.] The estimates of the σ_{ij} (or c_{ij}) between the pairs of labor subgroups being studied will generally be biased. The separability of the labor subgroups from capital should always be tested rather than imposed if the data permit.

Even if the labor subaggregates are separable from capital (or, if they are not separable, the biases induced by assuming separability are small), a problem of interpretation arises. Assume, for example, that the true production function is

$$Y = F(K, G[L_1, L_2]),$$

where the function G aggregates the two types of labor. Estimates based on

$$L = G(L_1, L_2),$$

implicitly measure substitution along an isoquant that holds L, but not necessarily Y constant. Thus, the factor-demand elasticities computed from (50) are not constant-output demand elasticities [see Berndt (1980) for a discussion of this]. They are gross elasticities; constant-output labor demand elasticities will differ from these, for any rise in the price of, say, L_1, will induce a reduction in L (because the price of aggregate labor has fallen). If, for example, the L-constant demand elasticity for L_1 is η^*_{L1}, the constant-output demand elasticity will be

$$\eta_{11} = \eta^*_{11} + s_{11} \eta_{LL},$$

where η_{LL} is the constant-output elasticity of demand for all labor [see Berndt and Wood (1979)]. In general,

$$\eta_{ij} = \eta^*_{ij} + s_{ij} \eta_{LL}.$$

The true (constant-output) demand elasticity is more negative (greater in absolute value) than the gross elasticity, η^*_{11}; and the true cross-price demand elasticities are more negative than those based on estimates of substitution using (50) as the underlying production relation.

Assuming the labor subgroups can be treated as separable from capital, there is nothing wrong with the estimates of factor-demand (or factor-price elasticities in the dual case). However, they are not the usual elasticities, and should be
adjusted accordingly. Otherwise, one will underestimate own-price demand elasticities, and infer that the types of labor are greater p-substitutes than in fact they are.

Another consideration is the choice of a disaggregation of the work force. Much of the early empirical work (through the middle 1970s) focused on the distinction between production and nonproduction workers. This was dictated partly by the ready availability of time-series data on this disaggregation, partly by the belief that this distinction represented a comparison of skilled and unskilled workers. Recent work by labor economists has recognized that differences in skill (embodied human capital) between production and nonproduction workers are not very great. Also, most of the policy issues on which studies of labor demand can have a bearing involve labor subgroups disaggregated according to other criteria. Thus, most of the recent work has disaggregated the work force by age, by race or ethnicity, by sex, or by these criteria in various combinations.

Economists' interest in substitution among particular groups of labor necessitates the aggregation of workers who differ along other dimensions that are of less interest to the researcher. Care should be exercised, though, that the aggregations decided upon make sense, in that substitution toward other groups is the same for all workers within a subaggregate. In practice this means that, wherever possible given the limitations of the data being used, one should test for the consistency of aggregating workers into larger groups. For example, if one is concerned about substitution among males, females and capital, one should if possible test whether the substitution between young men and females (or capital) is the same as that for older men.

The problem of deciding which disaggregation to use and the larger difficulty of deciding what we mean by a "skill" have led to efforts to circumvent the decision by defining a set of characteristics of the workers. In this view [see Welch (1969) and Rosen (1983)] each worker embodies a set of characteristics (by analogy to Lancastrian models of the demand for goods). This approach has the appeal of avoiding the aggregation of what may be very dissimilar workers into a particular group; instead, it "lets the data tell" what the appropriate skill categories are, in a manner similar to factor analysis. One of its difficulties is that it has not as yet been developed enough that the powerful restrictions of production theory can be imposed on estimates using this approach. Also, for many issues that attract public interest the arbitrary disaggregations of workers by age, race, sex, etc. are of substantial importance.

9 Indeed, one should be able to demonstrate that workers can be aggregated linearly, not merely that those within a subgroup are separable from those in other subgroups.

10 Stapleton and Young (1983) have attempted to apply this view to the United States for 1967–77. The results support many of the findings summarized in the next section, though they are not uniformly consistent with the theory of production.
<table>
<thead>
<tr>
<th>Study</th>
<th>Data and method</th>
<th>σ_{RK}</th>
<th>σ_{WK}</th>
<th>σ_{BW}</th>
<th>η_{RR}</th>
<th>η_{WW}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Capital excluded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Cost functions</td>
<td>Manufacturing plants, 1968, 1970, and 1972, detailed industry dummy variables; CES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Union</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonunion</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Production functions</td>
<td>Manufacturing, 1929–68; translog, 1968 elasticities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dougherty (1972)</td>
<td>States, Census of Population, 1960; CES</td>
<td>4.9</td>
<td>-1.63</td>
<td>-2.87</td>
<td></td>
</tr>
<tr>
<td>II. Capital Included</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Cost functions</td>
<td>Manufacturing, 1947–71; translog, 1971 elasticities</td>
<td>0.91</td>
<td>1.09</td>
<td>3.70</td>
<td>-1.23</td>
<td>-0.72</td>
</tr>
<tr>
<td></td>
<td>Clark and Freeman (1977)</td>
<td>Manufacturing, 1950–76; translog, mean elasticities</td>
<td>2.10</td>
<td>-1.98</td>
<td>0.91</td>
<td>-0.58</td>
</tr>
<tr>
<td></td>
<td>Dennis and Smith (1978)</td>
<td>2-digit manufacturing, 1952–73; translog, mean elasticities*</td>
<td>0.14</td>
<td>0.38</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denny and Fuss (1977)</td>
<td>Manufacturing, 1929–68; translog, 1968 elasticities</td>
<td>1.50</td>
<td>-0.91</td>
<td>2.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freeman and Medoff (1982)</td>
<td>Pooled states and 2-digit manufacturing industries, 1972; translog,</td>
<td>0.94</td>
<td>0.53</td>
<td>0.02</td>
<td>-0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Union</td>
<td>0.90</td>
<td>1.02</td>
<td>0.76</td>
<td>-0.43</td>
</tr>
<tr>
<td></td>
<td>Grant (1979)</td>
<td>SMSAs, Census of Population, 1970; translog,</td>
<td>0.47</td>
<td>0.08</td>
<td>0.52</td>
<td>-0.32</td>
</tr>
<tr>
<td></td>
<td>Professionals and managers</td>
<td>0.46</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sales and clericals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kesselman et al. (1977)</td>
<td>Manufacturing, 1962–71; translog, 1971 elasticities</td>
<td>1.28</td>
<td>-0.48</td>
<td>0.49</td>
<td>-0.34</td>
</tr>
<tr>
<td></td>
<td>Woodbury (1978)</td>
<td>Manufacturing, 1929–71; translog, 1971 elasticities</td>
<td></td>
<td></td>
<td></td>
<td>-0.70</td>
</tr>
<tr>
<td>Study</td>
<td>Data and method</td>
<td>σ_{BK}</td>
<td>σ_{WK}</td>
<td>σ_{BW}</td>
<td>η_{BB}</td>
<td>η_{WW}</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>B. Production functions</td>
<td>Manufacturing, 1929–68; translog 1968 elasticities</td>
<td>2.92</td>
<td>-1.94</td>
<td>5.51</td>
<td>-2.10</td>
<td>-2.59</td>
</tr>
<tr>
<td>Chiswick (1978)</td>
<td>States, Census of Population, 1910 and 1920 manufacturing; CES professionals vs. others</td>
<td>2.86</td>
<td>-1.88</td>
<td>4.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansen et al. (1975)</td>
<td>3- and 4-digit industries, Census of Manufactures, 1967, translog; a highest quartile of plants</td>
<td>2.0</td>
<td>-1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest quartile of plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Estimates are medians of parameters for individual industries.

b Ranked by value added per manhour. Estimates are medians of parameters for individual industries.

7. Heterogeneous labor—results and problems

A summary of the parameters of interest in the studies that have examined heterogeneous labor disaggregated by occupation is shown in Table 8.4. Perhaps the most consistent finding is that nonproduction workers (presumably skilled labor) are less easily substitutable for physical capital than are production workers (unskilled labor). Indeed, a number of the studies find that nonproduction workers and physical capital are p-complements. This supports Rosen’s (1968) and Griliches’ (1969) initial results on the capital-skill complementarity hypothesis. This finding has major implications for the employment effects of such policies as accelerated depreciation, investment tax credits and other attempts to stimulate investment in physical capital, suggesting that they will increase the demand for skilled relative to unskilled labor.

Although not uniformly observed in all studies tabulated, in most the demand elasticity for nonproduction workers is lower than that for production workers. This difference reflects what seems to be a consistent result among studies examining all the disaggregations of the labor force: the own-price demand elasticity is lower, the greater is the amount of human capital embodied in the

11 The issues from 1979 to 1982 of a large number of journals were searched. For years before 1979 the references are taken from Hamermesh and Grant (1979).
average worker in the particular class of labor. Thus, skill per se ties employers to workers by making labor demand less sensitive to exogenous changes in wage rates.

One would like to draw some inferences about the ease of substitution of white- for blue-collar labor, and about the absolute size of the demand elasticities for each. Unfortunately, there appears to be very little agreement among the studies on these issues. Examining the table more closely, though, one notices that the estimated demand and substitution elasticities are generally higher in those studies that base them on estimates of production functions. Since inferring these parameters from production functions requires inversion of an entire matrix of parameter estimates [see eq. (29)], they will be affected by errors in any of the parameters estimated. While there is no reason to expect biases, the accumulation of errors is also to be avoided. For that reason the cost-function estimates are likely to be more reliable. The estimates shown in parts I.A and II.A are better ones to use to draw inferences about the extent of substitution among these three factors. Using them, the demand elasticities for the broad categories, white- and blue-collar labor, seem to be roughly the same magnitude as the estimates of the demand elasticity for homogeneous labor that we discussed in Section 5.

Only a few studies have disaggregated the labor force by educational attainment. Among them Grant (1979) finds that the own-price demand elasticity declines the more education is embodied in the group of workers. (This is consistent with the results on the relation of the elasticity to the skill level that we noted above.) Grant and others, including Welch (1970) and Johnson (1970), find that college and high-school graduates are p-substitutes. (These latter two studies, which estimate pairwise CES relations, are less reliable because they did not allow the level of other factor inputs to affect the measured extent of substitution within a pair of inputs. Essentially they estimate relative factor demand for many pairs of factors.) All the studies estimate the extent of substitution, and the own-price demand elasticities, to be roughly on the order of those found between white- and blue-collar workers in Table 8.4.

The disaggregations of labor used in the studies discussed above are clear-cut. In the more recent research a large variety of disaggregations, mostly involving age and/or race and/or sex, have been used. This diversity makes it rather difficult to draw many firm conclusions from the findings because of the relative lack of replication. In Table 8.5 I list the results of these studies, separating them by whether they estimate substitution elasticities or elasticities of complementarity. Among the former several results appear consistently among the studies. The estimated demand elasticities (and, though they are not shown in the table, the substitution elasticities) are much larger when produced using methods that treat factor quantities as exogenous. This result parallels what we observed in Table 8.4; even though quantities may be exogenous, deriving any substitution elasticity from estimates based on this assumption requires estimates of all the production
parameters. That requirement may induce large errors when one or more of the parameters is estimated imprecisely.

The estimates of the factor-demand elasticities vary greatly among the studies. [Indeed, in Merrilees (1982) some are positive, for reasons that are not clear; but their sign casts doubt on all of Merrilees' results.] However, the demand elasticity for adult men is generally lower than that for other groups of workers. This result is another reflection of the apparently general inverse relationship between a group's average skill level and the elasticity of demand for its labor. The final generalization from the studies listed in part I of Table 8.5 is that in most of the disaggregations each factor is a p-substitute for the others.

As we noted in Section 6, the elasticity of supply should guide the choice about whether to treat wages or quantities as exogenous. In the case of disaggregating by age and sex, treating quantities as exogenous and deriving elasticities of complementarity and factor price is the better choice (in the absence of a well-specified model of the supply of each type of labor) if data on large geographical units are used. [Clearly, if data on a small industry or even individual establishments are used, wages should be treated as exogenous. One's belief in the validity of the theory of labor demand should be strengthened by the results of those three studies—Rosen (1968), O'Connell (1972) and King (1980)—that use these small units and find the expected negative own-price elasticities for workers in narrowly-defined occupations.] The studies presented in part II of Table 8.5 treat quantities as exogenous and estimate these elasticities for a variety of disaggregations of the labor force. As such they give a better indication of the substitution possibilities within the labor force disaggregated by age, race and sex than do those listed in part I.

In all the studies the elasticities of factor prices are fairly low. [Given the small share of output accounted for by most of the inputs, the elasticities implied by Borjas' studies and by Berger (1983) are also quite low.] They suggest that the labor market can accommodate an exogenous change in relative labor supply without much change in relative wages.¹² No generalizations about the relative magnitudes of the elasticities are possible from the studies currently available.

One intriguing result occurs in three of the four studies [Borjas (1983a), Grant-Hamermesh (1981) and Berger (1983)] that examine the issue. Adult women are q-substitutes for young workers. Borjas (1983a) also disaggregates the black male work force by age and finds that most of the q-substitutability is between women and young black men. This finding suggests that the remarkably rapid growth in the relative size of the female labor force that has occurred in many industrialized countries, including the United States, Canada and Sweden,

¹²This finding implies nothing about how quickly an economy can adjust to such a change. Even though the required change in relative wages may be slight, adjustment costs may be sufficiently large to lead to long periods of disequilibrium in the markets for some of the groups of labor.
<table>
<thead>
<tr>
<th>Category</th>
<th>Study</th>
<th>Data and method</th>
<th>Types of labor</th>
<th>Data and method</th>
<th>Types of labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages exogenous</td>
<td>Welch and Cunningham (1978)</td>
<td>States, Census of Population, 1970; CES</td>
<td>14–15, 16–17, 18–19</td>
<td>All are</td>
<td>σ_{ij}</td>
</tr>
<tr>
<td>Time-series</td>
<td>Johnson and Blakemore (1979); Layard (1982)</td>
<td>Entire U.S. economy, 1970–77; CES</td>
<td>M < 21</td>
<td>All are</td>
<td>η_{ii}</td>
</tr>
<tr>
<td>Time-series</td>
<td></td>
<td>British manufacturing, 1949–69; translog</td>
<td>F < 18</td>
<td>> 0 except</td>
<td>-1.34</td>
</tr>
<tr>
<td>Time-series</td>
<td></td>
<td></td>
<td>M 21+</td>
<td>F < 18 vs. F 18+</td>
<td>-1.25</td>
</tr>
<tr>
<td>Time-series</td>
<td></td>
<td></td>
<td>F 21+</td>
<td></td>
<td>-1.59</td>
</tr>
</tbody>
</table>

B. Capital included

Wages exogenous	Merrilees (1982)	Canada, entire economy, 1957–78; factor-demand equations	Young males	Mixed, but all involving	0.56
Wages exogenous	Time-series	Hamermesh (1982)	Young females	Adult males	0.44
Quantities exogenous	Grant (1979)	SMSAs, Census of Population, 1970; translog	Adult females	> 0	0.07
Quantities exogenous	Cross-section				0.11
Time-series			25–44	> 0	-2.72
Time-series			45+		-2.48
Time-series			16–24	All are	-7.14
Time-series			25–44	> 0	-3.45
Time-series			45+		-3.99
II. Elasticities of complementarity and factor prices (quantities exogenous)

<table>
<thead>
<tr>
<th>A. Capital excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-section</td>
</tr>
<tr>
<td>Borjas (1983b)</td>
</tr>
<tr>
<td>Entire U.S. economy, microdata 1975; generalized Leontief</td>
</tr>
<tr>
<td>Blacks</td>
</tr>
<tr>
<td>All are</td>
</tr>
<tr>
<td>Hispanics</td>
</tr>
<tr>
<td>> 0</td>
</tr>
<tr>
<td>Whites</td>
</tr>
<tr>
<td>-0.07<sup>a</sup></td>
</tr>
<tr>
<td>-0.64<sup>a</sup></td>
</tr>
<tr>
<td>-0.001<sup>a</sup></td>
</tr>
<tr>
<td>B. Capital included</td>
</tr>
<tr>
<td>Cross-section</td>
</tr>
<tr>
<td>Borjas (1983a)</td>
</tr>
<tr>
<td>Census of Population, 1970; generalized Leontief</td>
</tr>
<tr>
<td>Black males</td>
</tr>
<tr>
<td>All > 0 except those involving females, and some involving Hispanics</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>1.02<sup>a</sup></td>
</tr>
<tr>
<td>Hispanic nonmigrants</td>
</tr>
<tr>
<td>2.90<sup>a</sup></td>
</tr>
<tr>
<td>Hispanic migrants</td>
</tr>
<tr>
<td>-2.66<sup>a</sup></td>
</tr>
<tr>
<td>White nonmigrants</td>
</tr>
<tr>
<td>-0.03</td>
</tr>
<tr>
<td>White migrants</td>
</tr>
<tr>
<td>1.02<sup>a</sup></td>
</tr>
<tr>
<td>Grant and Hamermesh (1981)</td>
</tr>
<tr>
<td>SMSAs, Census of Population 1970; translog</td>
</tr>
<tr>
<td>Youths</td>
</tr>
<tr>
<td>All > 0 except youths vs. F 25+</td>
</tr>
<tr>
<td>Blacks 25+</td>
</tr>
<tr>
<td>-0.03</td>
</tr>
<tr>
<td>White M25+</td>
</tr>
<tr>
<td>-0.43</td>
</tr>
<tr>
<td>White F25+</td>
</tr>
<tr>
<td>-0.13</td>
</tr>
<tr>
<td>Grossman (1982)</td>
</tr>
<tr>
<td>SMSAs, Census of Population 1970; translog</td>
</tr>
<tr>
<td>Natives</td>
</tr>
<tr>
<td>All are</td>
</tr>
<tr>
<td>Second generation</td>
</tr>
<tr>
<td>< 0</td>
</tr>
<tr>
<td>Foreign born</td>
</tr>
<tr>
<td>-0.20</td>
</tr>
<tr>
<td>Berger (1983)</td>
</tr>
<tr>
<td>States, U.S., 1967–74; translog</td>
</tr>
<tr>
<td>M, 0–15 yrs. school, 0–14 experience</td>
</tr>
<tr>
<td>except young</td>
</tr>
<tr>
<td>M, 16+ school, 0–14 experience</td>
</tr>
<tr>
<td>vs. old</td>
</tr>
<tr>
<td>M, 0–15 school, 15+ experience</td>
</tr>
<tr>
<td>college grads</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>-3.45<sup>a</sup></td>
</tr>
<tr>
<td>-0.80<sup>a</sup></td>
</tr>
<tr>
<td>-1.48<sup>a</sup></td>
</tr>
<tr>
<td>Time-series</td>
</tr>
<tr>
<td>Freeman (1979)</td>
</tr>
<tr>
<td>Entire U.S. economy, 1950–74; translog</td>
</tr>
<tr>
<td>M 20–34</td>
</tr>
<tr>
<td>Only</td>
</tr>
<tr>
<td>M 35–64</td>
</tr>
<tr>
<td>M 20–34 vs. F is > 0</td>
</tr>
<tr>
<td>-0.38</td>
</tr>
<tr>
<td>-0.49</td>
</tr>
<tr>
<td>mean elasticities</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>-0.71</td>
</tr>
</tbody>
</table>

^a Own-quantity elasticities of complementarity.
in the past twenty years has contributed to a decline in the equilibrium relative wage rate for young workers. To the extent that relative wages cannot adjust because of real wage floors, and thus permanent unemployment, the assumptions needed to produce estimates of \(q \)-substitutability are incorrect. However, so long as adjustment \(\text{eventually} \) occurs, these cross-section estimates can be used to infer that the growth of the female labor force has also contributed to the high rate of youth unemployment in these countries during this time.

Among the studies discussed in this section only a few have tested for the separability of labor from capital (and thus shed light on whether estimates of the (gross) elasticities of demand or of factor prices obtained when capital is excluded are biased). Berndt and Christensen (1974a) and Denny and Fuss (1977) examine this issue using the production-worker, nonproduction-worker disaggregation; and Grant and Hamermesh (1981) disaggregate the labor force by age, race and sex. All three studies conclude that the separability of labor from capital is not supported by the data. The findings suggest that the inclusion of the quantity or price of capital services is necessary to derive unbiased estimates of production and cost parameters even between subgroups in the labor force. The extent of the biases induced by assuming separability has not been examined, though Borjas (1983a) indicates that the \(a_{ij} \) involving labor-force subgroups change little when capital is excluded from a generalized Leontief system.\(^{13}\)

There has also been very little effort made to examine whether the particular disaggregations used are correct in assuming that workers included within a subgroup are equally substitutable for workers in other subgroups. This absence is due partly to the difficulties of obtaining data on large numbers of narrowly-defined groups of workers. However, the evidence [see Grant and Hamermesh (1981)] suggesting that it is incorrect to aggregate subgroups of workers into still larger subgroups should induce greater care in future research in this area.

8. Conclusions

Research into the demand for labor over the past 50 years has focused on depicting demand in a decreasingly restrictive way as the outcome of employers’ attempts at cost minimization or profit maximization. The outcome of this trend to date is a means of characterizing demand for \(N \) factors of production in a way that allows for complete flexibility in the degree of substitution within any pair of

\(^{13}\)By itself, though, this shows very little, since small changes in the estimated parameters in a translog or generalized Leontief system often lead to large changes in the estimates of the underlying production or cost parameters, as the discussion in Section 3 indicates.
factors; for that flexibility to depend on the firm’s output level; and for flexibility in the specification of returns to scale in production. Not only is the theory completely general: we have today the means to describe production relations empirically in a completely general manner.

Perhaps the main advantage of this increased generality is that it allows us to test whether some of the simpler specifications of labor demand describe the data well. Thus, the many studies analyzed in Section 5 suggest that the Cobb–Douglas function is not a very severe departure from reality in describing production relations between homogeneous labor and physical capital. So too, returns to scale in production functions involving homogeneous labor do not seem to differ too greatly from one.

The major advance of the last 15 years has been the ability to estimate substitution within several pairs of inputs. While such estimation is really in its childhood (partly because of the wide range of interesting choices about how to disaggregate the labor force), some results are already fairly solid. (1) Skill (human capital) and physical capital are \(p \)-complements in production; at a fixed output employers will expand their use of skilled labor when the price of capital services declines. (2) The demand for skill is also less elastic than the demand for raw labor; thus we find that the demand for more educated or more highly trained workers is less elastic than that for other workers. (3) No matter what the disaggregation, labor is not separable in production from physical capital. This finding implies that estimates of substitution among groups within the labor force should be based on models that include either the price or quantity of capital services. (4) Finally, though it is less solid a result than the other three, there is an accumulation of evidence that adult women are \(q \)-substitutes for young workers.

The theory and estimation techniques we have outlined provide many ways to estimate the degree of factor substitution and the responsiveness of factor demand (prices) to changes in factor prices (quantities). Though the appropriate specification depends upon one’s beliefs about the behavior of the agents in the particular labor market, several guidelines for the analysis arise from this discussion. Where at all possible, the specification should allow the researcher sufficient flexibility to test whether simpler specifications are applicable. Where the data are available, physical capital should be included as a factor of production in the analysis along with the various types of labor.

Despite the substantial advances that have been made in analyzing the demand for labor, a remarkable amount is still unknown. We still understand very little about the absolute magnitudes of elasticities of demand, or elasticities of factor prices, for various labor-force groups. So too, the ease of substitution among groups is only now beginning to be analyzed.

More important than these lacunae in our understanding of labor demand, though, are problems induced by the failure to account for the interaction of substitution parameters with parameters describing the supply of labor-force
groups. Those relatively few studies that have estimated demand relations using highly disaggregated data corroborated the basic predictions of the theory of labor demand. However, there has been far too little work that has accounted for the possibility of simultaneity between wages and quantities of labor. Since we have seen how important the specification of labor supply is to deriving estimates of production parameters, the joint estimation of substitution parameters and labor supply should be an area that will lead to substantial advances in understanding the demand for labor. Alternatively, more research is needed that estimates demand relations using data on individual firms or establishments as units of observation.

References

Ch. 8: Demand for Labor

